187 research outputs found

    Understanding Image Virality

    Full text link
    Virality of online content on social networking websites is an important but esoteric phenomenon often studied in fields like marketing, psychology and data mining. In this paper we study viral images from a computer vision perspective. We introduce three new image datasets from Reddit, and define a virality score using Reddit metadata. We train classifiers with state-of-the-art image features to predict virality of individual images, relative virality in pairs of images, and the dominant topic of a viral image. We also compare machine performance to human performance on these tasks. We find that computers perform poorly with low level features, and high level information is critical for predicting virality. We encode semantic information through relative attributes. We identify the 5 key visual attributes that correlate with virality. We create an attribute-based characterization of images that can predict relative virality with 68.10% accuracy (SVM+Deep Relative Attributes) -- better than humans at 60.12%. Finally, we study how human prediction of image virality varies with different `contexts' in which the images are viewed, such as the influence of neighbouring images, images recently viewed, as well as the image title or caption. This work is a first step in understanding the complex but important phenomenon of image virality. Our datasets and annotations will be made publicly available.Comment: Pre-print, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Don't Just Listen, Use Your Imagination: Leveraging Visual Common Sense for Non-Visual Tasks

    Full text link
    Artificial agents today can answer factual questions. But they fall short on questions that require common sense reasoning. Perhaps this is because most existing common sense databases rely on text to learn and represent knowledge. But much of common sense knowledge is unwritten - partly because it tends not to be interesting enough to talk about, and partly because some common sense is unnatural to articulate in text. While unwritten, it is not unseen. In this paper we leverage semantic common sense knowledge learned from images - i.e. visual common sense - in two textual tasks: fill-in-the-blank and visual paraphrasing. We propose to "imagine" the scene behind the text, and leverage visual cues from the "imagined" scenes in addition to textual cues while answering these questions. We imagine the scenes as a visual abstraction. Our approach outperforms a strong text-only baseline on these tasks. Our proposed tasks can serve as benchmarks to quantitatively evaluate progress in solving tasks that go "beyond recognition". Our code and datasets are publicly available

    Punny Captions: Witty Wordplay in Image Descriptions

    Full text link
    Wit is a form of rich interaction that is often grounded in a specific situation (e.g., a comment in response to an event). In this work, we attempt to build computational models that can produce witty descriptions for a given image. Inspired by a cognitive account of humor appreciation, we employ linguistic wordplay, specifically puns, in image descriptions. We develop two approaches which involve retrieving witty descriptions for a given image from a large corpus of sentences, or generating them via an encoder-decoder neural network architecture. We compare our approach against meaningful baseline approaches via human studies and show substantial improvements. We find that when a human is subject to similar constraints as the model regarding word usage and style, people vote the image descriptions generated by our model to be slightly wittier than human-written witty descriptions. Unsurprisingly, humans are almost always wittier than the model when they are free to choose the vocabulary, style, etc.Comment: NAACL 2018 (11 pages

    Analyzing the Behavior of Visual Question Answering Models

    Full text link
    Recently, a number of deep-learning based models have been proposed for the task of Visual Question Answering (VQA). The performance of most models is clustered around 60-70%. In this paper we propose systematic methods to analyze the behavior of these models as a first step towards recognizing their strengths and weaknesses, and identifying the most fruitful directions for progress. We analyze two models, one each from two major classes of VQA models -- with-attention and without-attention and show the similarities and differences in the behavior of these models. We also analyze the winning entry of the VQA Challenge 2016. Our behavior analysis reveals that despite recent progress, today's VQA models are "myopic" (tend to fail on sufficiently novel instances), often "jump to conclusions" (converge on a predicted answer after 'listening' to just half the question), and are "stubborn" (do not change their answers across images).Comment: 13 pages, 20 figures; To appear in EMNLP 201

    Don't Just Assume; Look and Answer: Overcoming Priors for Visual Question Answering

    Full text link
    A number of studies have found that today's Visual Question Answering (VQA) models are heavily driven by superficial correlations in the training data and lack sufficient image grounding. To encourage development of models geared towards the latter, we propose a new setting for VQA where for every question type, train and test sets have different prior distributions of answers. Specifically, we present new splits of the VQA v1 and VQA v2 datasets, which we call Visual Question Answering under Changing Priors (VQA-CP v1 and VQA-CP v2 respectively). First, we evaluate several existing VQA models under this new setting and show that their performance degrades significantly compared to the original VQA setting. Second, we propose a novel Grounded Visual Question Answering model (GVQA) that contains inductive biases and restrictions in the architecture specifically designed to prevent the model from 'cheating' by primarily relying on priors in the training data. Specifically, GVQA explicitly disentangles the recognition of visual concepts present in the image from the identification of plausible answer space for a given question, enabling the model to more robustly generalize across different distributions of answers. GVQA is built off an existing VQA model -- Stacked Attention Networks (SAN). Our experiments demonstrate that GVQA significantly outperforms SAN on both VQA-CP v1 and VQA-CP v2 datasets. Interestingly, it also outperforms more powerful VQA models such as Multimodal Compact Bilinear Pooling (MCB) in several cases. GVQA offers strengths complementary to SAN when trained and evaluated on the original VQA v1 and VQA v2 datasets. Finally, GVQA is more transparent and interpretable than existing VQA models.Comment: 15 pages, 10 figures. To appear in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201
    • …
    corecore